
IDA 

May 1995 

Approved for public release; 
distribution unlimited. 

IDA Document D-1692 

Log: H 95-046645 

NSTITUTE   FOR   DEFENSE   ANALYSES 

Atmospheric Ray Tracing for 
Predicting Mirages 

Irvin W. Kay 

*£** «t  pucac reise«* 

19961021 111 

„,-,JTTrfy m^lJFZD' I1. 



This work was conducted under contract DASW01 94 C 0054, DARPA 
Assignment A-180, for the Defense Advanced Research Projects Agency. 
The publication of this IDA document does not indicate 
endorsement by the Department of Defense, nor should the contents be 
construed as reflecting the official position of that Agency. 

© 1995,1996 Institute for Defense Analyses, 1801N. Beauregard Street, 
Alexandria, Virginia 22311-1772 • (703) 845-2000. 

This material may be reproduced by or for the U.S. Government pursuant 
to the copyright license under the clause at DFARS 252.227-7013 
(10/88). 



PREFACE 

The Institute for Defense Analyses was requested to assist the Office of Naval 
Research in the planning and execution of the Infrared Analysis, Modeling, and 

Measurements Program (IRAMMP). This document summarizes a portion of the work 
performed with ONR under Task A-180, "Infrared Clutter Characterization and Modeling," 
on alternative algorithms for Infrared Search and Track (IRST) systems during the period 
June 1994 to September 1995. The work was performed in coordination with 
Mr. Douglas N. Crowder, Naval Surface Warfare Center (NSWC), for the Sensor 
Technology Office, Special Projects Office, ARPA, under the technical cognizance of 

Mr. Thomas Wiener. 

This document has not been subjected to formal IDA review. 
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I.    INTRODUCTION 

From the Earth's surface to altitudes that are not too high, the temperature may 

decrease with increasing height. If the temperature decreases at a large enough rate, the 

index of refraction will increase with increasing height.1 Such behavior can cause a 

mirage, i.e., more than one image of an object located at certain distances from the viewer. 

This particular version of the effect is called an "inferior" mirage because the normal 

image (one due to a bundle rays, each of which connects an object point to the viewing eye 

without crossing another ray in the bundle) appears to be above a second, abnormal, 

image. The phenomenon occurs when some rays emanating from an object toward the 

Earth's surface either begin with or achieve negative curvature before reaching the surface, 

so that they bend upward, being totally reflected by the atmosphere. These rays then cross 

one another, forming a caustic, before reaching the viewer. The result is an inverted image 

of the object appearing below the normal image created by other rays from the same object 

points. Each ray contributing to the inferior mirage image passes through a minimum 

height between the object and the eye, but no rays contributing to the normal image have 

minima between the object and the eye. 

Another version, called a "superior" mirage, exists when an abnormal image 

appears above the normal one and is the result of rays that are totally reflected from 

atmospheric layers at higher altitudes than the viewing eye. The superior mirage is due to a 

temperature inversion that occurs when the Earth's surface, which in this case is often 

water or ice, is colder than the air above it, and the atmospheric temperature increases with 

height instead of decreasing. Atmospheric refraction then causes light rays to bend with 

positive curvature, i.e., in the same sense as the Earth's surface. Rays that arrive from a 

sufficiently distant object converge on the viewing eye from above, each attaining a 

maximum altitude between the eye and the object. 

If the rays intersect one another, forming a caustic, so that they arrive at the eye in 

reverse order with respect to height, the image that they form of the object will appear to be 

However, the rate at which the temperature decreases, the so-called lapse rate, will normally grow 
smaller with increasing height, eventually becoming small enough for the index of refraction to reach a 
maximum and then decrease with increasing height (cf. Ref. 1, pp. 77 ff.). 
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inverted. Other rays, arriving at the eye with smaller elevation angles, will have no maxima 

between the eye and the object and will therefore maintain their initial order with respect to 

height. The two sets of rays will then form an inverted, superior mirage image above a true 

image of the object. 

As an aid to understanding some of the observed behavior of mirages, this 

document considers some analytical connections between geometrical properties of such 

phenomena and physical properties of the atmosphere. Section II reviews the well known 

relationship between the index of refraction at optical-infrared frequencies and the atmo- 

spheric temperature as functions of altitude. Section III considers the geometrical proper- 

ties of rays in a spherically stratified, continuous propagation medium, assumed to be a 

good model of the Earth's lower atmosphere. Section IV discusses consequences of this 

analysis for the nature of complex mirages. 



II.   INDEX OF REFRACTION IN A SPHERICALLY 
SYMMETRIC ATMOSPHERE 

It is customary to deal with the index of refraction n(r) of the atmosphere in terms 

of the refractive modulus (or N unit) defined by 

N = (n-l)xl06   . (1) 

For optical wavelengths greater than 0.23 \i and for infrared wavelengths, N for the atmo- 

sphere is given by Edlen's formula (Ref. 2, p. 18-7) 

N = Nd - N. W        5 (2) 

where the first term on the right side of (2) is for a dry atmosphere and is given by 

NH = 
ai ao 

1- 
VDU 

1- 
vb2y 

P (T0+ 15.0) 
(3) 

and the second term, which is the contribution due to water vapor, by 

Nw = 
( .,\ 

c0 
vcU 

w (4) 



In (3) and (4) P is the total pressure in mb, T is the temperature in °K, Po = 1013.25 mb, 
To = 273.15 °K, Pw is the partial pressure of water vapor in mb, and v = K^A which is 

the wave number in cm-* for the wavelength X in microns. Also 

ao = 83.42, 

ai = 185.08, 

a2 = 4.11, 

bi = 1.14 x 105, 

b2 = 6.24 x 104, 

co = 43.49, 

ci = 1.7 x 104. 

Numerical examples assuming a value of 25 mb for Pw and ground temperatures on the 

order of 300 °K indicate that the contribution of the water vapor term Nw to the refractive 

modulus is well below 1 percent of its total value and can therefore be neglected. 

It is clear from (3) and (4) that the behavior of the modulus of refraction N as a 

function of r is the result of the functional dependence on r of the temperature T, the total 

pressure P, and the water vapor partial pressure Pw. If the water vapor contribution is 

neglected the functions P(r) and T(r) will determine the atmospheric variation of the index 

of refraction, by means of which the geometrical properties of optical rays in the lower 

atmosphere can be determined. 

The hydrostatic relation between the pressure P and atmospheric density p as func- 

tions of the radial distance r in an Earth-centered polar coordinate system is 

— = "gp   , (5) dr 

where g is the acceleration of gravity. The gas law for an ideal gas is 

P = RTp   , (6) 

where T is the temperature and R is the gas constant. Eliminating p from (5) and (6) leads 

to the differential equation 
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£—£-    , (7) 
dr       RT 

for which the solution is 

_JL} te 
R     T 

P = P0e    re       , (8) 

where re is the radius of the Earth and Po is the atmospheric pressure at the Earth's surface. 

In (8) g = 9.8 m/sec2. Also, the gas constant R in erg/°K-mol is 8.3145 x 107, 

and the molar weight of air is .028971 kgm (cf. Ref. 3, p.17); therefore, since 1 Joule = 

107 erg, in the MKS system 

R = 286.99389 Joule/°K-kgm   . (9) 

Neglecting the contribution Nw due to water vapor, it follows from (2), (3), and (8) 

that the refractive modulus is given by 

r   dz 
-.03417] 

78580 reT(z) 

T(r) 

Then, according to (1), 

r   dz 
.03417 J   W 

,.    1    .07858 rT(z) 
n(r) = l + —— e re . (11) 

T(r) 



III.   RAYS IN A SPHERICALLY SYMMETRIC MEDIUM 

For most purposes it can be assumed that the Earth is a sphere and that the index of 

refraction profile of the atmosphere is continuously stratified in concentric spherical layers 

down to the Earth's surface. A ray can be represented in polar coordinates relative to an 

origin at the center of the Earth by an equation of the form 

r = r(0)   . (12) 

It is assumed that the index of refraction of the atmosphere is a function n(r) relative 

to this polar coordinate system. Then the function r(6) representing a ray satisfies (cf. 

Ref. 4, p. 123 ) 

r<e> do 
e-60 = af      .      ap . (13) 

r0 pVpznz(p)-cr 

The one parameter family of rays determined, for different values of a, by (13) all pass 

through the point (ro, 6o). For a given ray the corresponding parameter a can be 

expressed in terms of the angle \|/ between the radius vector from the origin of the 

coordinate system to (ro, 6o) and the tangent to the ray at that point by2 

a = ±r0n(ro)sin\|/ 

so that (13) becomes 

, 1 dr 1    This is a result of the relation cot \i =  
r0d6 

(cf. Ref. 5, p. 265). 
e=e0 



e-90=±r0n(ro)sin¥J dp . (14) 
ropyp V^-rgn^roJsirrv 

If it is contributing to a mirage, a ray must pass through a maximum or minimum 

height above the Earth's surface; i.e., at some angle 0m the radial coordinate of a point on 

the ray must satisfy the relation 

dr 

d0 
= 0 

0=6m 

This condition applied to (13) leads to 

dr 

dG 
= ±        r"        Vrmn2(rm)-r§n2(r0)sin2

V=0   , 
e=0m       r0n(r0)siny 

which is equivalent to 

rmn(rm) = r0n(r0)sin\(/   . (15) 

Since (15) implies that rmn(rm) cannot be larger than ron(ro), if rm is a maximum 

for the ray, n(r) must decrease between ro and rm. If rm is a minimum for the ray, and 

therefore no larger than ro, n(r) must be an increasing function of r over some neighbor- 

hood of rm that may or may not include ro. In the rest of this document it will be assumed 

that this is the case for r values within some layer at the Earth's surface.3 

The curvature of a curve expressed in polar coordinates, e.g., the ray given by 

(13), is given by (cf. Ref. 5, p. 291) 

3    An example, discussed in Ref. 1, is the case of the unstable layer that usually forms on the ground after 
daybreak and disappears at night. 



r2 + 2 
K = 

drV 
dej de2 

Ue 

(16) 

Using the relations 

dr = +- 
Lm 

d9       r0n(r0)sin\i/ 
^/r2n2(r)-r§n2(r0)sin2\i/ (17) 

and 

d2r = dr d f (fa- 
de2 "dGdrUe 

(18) 

the ray curvature given by (14) and (16) becomes 

K = _roKro)dns.nv 

rn (r) dr 
(19) 

It follows from (19) that the ray curvature is negative where the slope of the index of 

refraction is positive and positive where the slope is negative. 

Using (19) with (11), it is possible to obtain the curvature of a ray at any point in 

terms of the temperature profile. A straightforward calculation provides the result: 

[n(r)-llrnn(rn)sin\i/^dT ^ 
K(r) = i-^—J " V     -\ — + 0.03417 

rnz(r) Vdr ) 
(20) 



It is evident from (20) that at a given altitude the curvature of a ray is positive if the slope of 

the temperature profile is greater than - .03417, is zero if the slope is equal to - .03417, 

and is negative if the slope is less than - .03417. 

Suppose that the eye level of the viewer is at the radial distance ro from the Earth's 

center and the radial line is the polar axis 9 = 0. Also, suppose that a ray begins at the 

point (ro,0) with the direction of its tangent there specified by an obtuse zenith (measured 

from the polar axis) angle \|/. Then the ray will be given by (14) and (15) in the form 

e = rmn(rm)rf°     , dp ,0<6<6m    , (21) 
rprn(P)-rmn(rm) 

for r > rm, which is the minimum radial coordinate of the ray as determined by (15), and by 

6 = em+rmn(rm)J dp ,26m>e>9m    , (22) 
rmPVP " (P)~rmn (rm) 

for r < ro. In (22) 0m is the angular coordinate of the ray point whose radial coordinate is 

rm-4 

The astronomical horizon, defined as the direction orthogonal to a plumb line, is 
7t 

given by \j/ = —.   A declination angle <\> from the astronomical horizon is therefore 

determined by \|/ = (() + —, so that for a small declination 

sin\|/ = sin| <(> + —= cos(j>~l- —   . (23) 

4    Of course, if rm is smaller than the Earth's radius, the ray will end at the Earth's surface and will have 
no physical minimum. 



An optical horizon is defined by a ray whose minimum is at the Earth's surface and is 

therefore determined by an initial declination satisfying (15) with rm set equal to the Earth's 

radius re. An approximation to the declination angle of a horizon ray follows from (23): 

^   2 Li + 10>(r0)-N(re)]      , (24) 
re 

where the function N(r) is the modulus of refraction. 

Given that the ray curvature K(r) is zero at rK, at any point (rm,9m) for which the 

radial coordinate satisfies (15), whether rm is a minimum or a maximum will depend on 

whether rm < rK or rm > rK. In particular, if y is a right angle the radial coordinate ro of the 

ray associated with \|/ will be a minimum or a maximum at the point (ro,0), depending on 

whether ro ^ rK or ro > rK.5 

7Ü 
If ro > rK, when \|/ > — the ray will start at (ro,0) with positive curvature and will 

approach the Earth's surface with the index of refraction n(r) increasing as r decreases. 

When the radial coordinate of the ray decreases below rK at which n(r) reaches a maximum, 

the index decreases with r until the ray either reaches the Earth's surface or passes through 

a point (rm,6m) where the radial coordinate is a minimum. Up to this point (21) determines 

the ray. As the angle 0 increases beyond 0m, (22) determines the behavior of the ray until 

its radial coordinate reaches a maximum. 

7t 
If \|/ < —, instead of (21) the ray equation becomes 

e = rmn(rm)f dp ,O<0<0m    , (25) 
roPVP n (P)"rmn (rm) 

for ro ^ r < rm, where at the ray point (rm,6m), the radial coordinate is a maximum. 

Beyond this point (22) determines the behavior of the ray as 0 increases until the ray 

5     If r0 = rK, whether the ray has a minimum or a maximum radial coordinate at (ro,0) will depend on the 
second, or perhaps even a higher order, derivative of n(r). 
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reaches the Earth's surface or achieves a minimum radial coordinate. If in (22) \|/ equals 
the angle \|/m that satisfies the equation 

ren(re)     n(re) /n^ 
sinx|/m=-^4~-p{   , (26) 

ron(ro)   n(ro) 

then according to (15) the ray will become tangent to the Earth's surface and therefore will 

determine an optical horizon for the viewer. 

To examine the effect of atmospheric refraction on images of objects located at 
distances much smaller than the Earth's radius, it is useful to employ approximate versions 
of equations (21) and (22) expressed in Cartesian coordinates. The origin of the Cartesian 
coordinate system is on the Earth's surface, so that the vertical (z) axis is coincident with 
the 9 = 0 line, and the horizontal (x) axis is tangent to the Earth. The (x,z) coordinates then 
may be related to the (r,6) by 

x = r6   , 

z = r-re   . (27) 

The ray equations given by (21) or (25) in polar coordinates take the form 

dC x = ±(z + rP )(zm + rP )v(zm) f 1 „   (28) 

where v(z) = n(z + re) and zm = rm - re. Dropping terms in (28) that are small compared 

to the Earth's radius re, (28) becomes 

x = ±n(zm)J « , (29) 
z0 Vn  GH  (zm) 

11 



where n(z) is now used in place of v(z) to represent the index of refraction in a plane 

stratified medium. In fact, (29) is the exact equation for a ray in a plane stratified medium.6 

Starting with (29), a straightforward calculation of the ray curvature leads to 

n(zm)dn(z) 
n2(z)   dz 

K = -"ym/  7 ' (30) 

instead of (19). 

It is customary to modify the index of refraction n(z) to accommodate the fact that 
although rays in an atmosphere with a constant index of refraction n(r) relative to an Earth- 
centered polar coordinate system are straight lines, and a horizon ray from the eye is 
tangent to the Earth's surface, this cannot be the case for a flat Earth relative to a Cartesian 
coordinate system. The solution is to change n(z) from a constant to a variable index of 
refraction such that the corresponding horizon ray will curve enough to be tangent to the 
flat Earth, i.e., by retaining a higher order term in the approximation leading to (29). 

A simple way to accomplish this is to start by getting rid of the integrals in (28) and 
(29). Differentiating both sides of (28) leads to 

dx=±    x" ± (re + zm)v(zm)  
dz'"rP+z-^(re + z)2v(z)2_(re+Zm)2v2(zm) le 

l(l + £)V(z)-(l + ^)V(zm) re + z 

(l + ^)v(zm) 
±    x    ± \     T*> .        (31) 

re + z 
v2-v2(zm) + —[zv2(z)-zmv2(zm)l 

6    Cf. Ref. 6, p. 38, specialized to a plane y = 0. 
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Assuming that v(z) ~ v(zm), it follows from (31) that 

dz     ±^(Z-Zm) 
dx ^ [ zm 

(32) 

Differentiating both sides of (29) and solving for n(z) leads to 

n(z) = n(zm)^l + ^] (33) 

Substituting from (32) into (33) and assuming that n(zm) = v(zm) provides the result 

2z 
e n(z)~v(zm)J '■*- i^ = v(Zm)JL_^L„v(Zm) 

1 + ^nL l + ^m- 

(      , V     ,   ^ 
1 + -2- 

v    rey 

i     zm 

so that 

n(z)~v(zm) 
'     z-z   ^ l + ^-^m 
V re    y 

v(zm) + ̂ -Z^~v(z) + ^-Z^ (34) 

N.B., the correction to be applied to the index of refraction of a plane-stratified 

medium when using a flat Earth approximation is ray dependent: it depends on the height 

zm at which the ray has a maximum or minimum. The usual correction 

n(z)~ v(z) + — (35) 

is valid only for a horizon ray, which has a minimum at the Earth's surface where zm = 0. 

13 



The temperature profile depicted in Figure 1 as a function of the altitude z above the 
Earth's surface will lead to an index of refraction profile given by (11) in the Earth-centered 
polar coordinate system. When the flat Earth approximation is used, and the resulting 
index of refraction is modified in accordance with (35), the corresponding index of 
refraction in a Cartesian coordinate system with its origin on the surface of the Earth has the 

profile shown in Figure 2. 

2S0 

1.00030 

1.00029 

1.00028 - 

1.00027 

1.0002E - 

1.00025 

1.00024 

1.00023 

1.00022 

1.00021 

200 300 400 500 

z ft 

Figure 1.    Temperature Profile 

100 200 300 400 500 

z ft 

Figure 2.   Index of Refraction Profile 
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IV.   MIRAGE CONDITIONS 

According to (15), in the Earth-centered polar coordinate system, for a ray passing 

through the eye at (ro,0) to have maxima or minima at several different heights ri, the pro- 

duct rin(n) must be the same at each height. With the corresponding Cartesian coordinate 

system and the flat Earth approximation, for which (29) provides the associated ray 

equation, the index of refraction n(zj) must have the same value at each height z\ where the 

ray maxima and minima occur. 

This implies that n(z) must have a minimum or a maximum between every two 

adjacent heights zj and zj+i where a ray minimum or maximum occurs. Moreover, where 

n(r) or n(z) has a minimum or maximum it follows from (19) or (30) that the ray curvature 

is zero. In either case, as the ray goes through the height where such a minimum or a 

maximum occurs, its curvature changes sign. 

In addition, it is evident from (29) that if n(z) is decreasing with height at the eye 

height zo, the height zm of a ray maximum or minimum closest to the eye along the ray path 

must be greater than ZQ. Similarly, if n(z) is increasing with height at zo, zm must be less 

than zo. 

Figures 3 and 4, along with Figure 2, illustrate these facts. Figure 3, which depicts 

an inferior mirage, shows a bundle of rays entering a viewing eye at a height of 200 feet, 

which is above the height where the associated index of refraction profile, shown in 

Figure 2, has a maximum. Figure 4, which depicts a superior mirage, shows a bundle of 

rays entering a viewing eye at a height of 80 feet, which is below the height where the 

profile has a maximum. 
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APPENDIX 

This Appendix considers the numerical problem of calculating an atmospheric 

temperature profile for which the associated index of refraction has a maximum, as well as 

rays with specified maximum or minimum heights in the medium. The approach is aimed 

at using Mathcad Plus 5.0 software for Windows as the means of implementing the 

calculations. 

The formulation is based on assuming that a cubic polynomial with only one real 

zero defines the temperature profile. Four parameters, one of which can be identified as a 

scale factor, define the polynomial, which has the form 

fzY5       (z\2    (b2+c2) t(z)=y -2bb)+ ^z+d ■      (A-I) 

where a, b, c are arbitrary parameters and sf is the scale factor. The associated index of 

refraction n(z) is given by (11). 

The relation (29) determines a ray with a maximum or a minimum at the height zm 

and entering the eye at the height zo. If a ray has a maximum or a minimum the horizontal 

Cartesian coordinate x must be a multi-valued function of the vertical coordinate z, and, as 

discussed in Section III for the case of a spherically symmetric medium, continuing x 

beyond the value given by (29) after z reaches the value zm requires changing the 

integration interval and adding a constant. For programming the calculation in Mathcad, a 

somewhat more convenient approach is to solve a differential equation for the ray, 

obtaining z as a (single valued) function of x. 

Differentiating both sides of (29) provides a suitable differential equation 

dz_^Vn2(z)-n2(zm) 

dx n(zm) 

A-l 



The right side of (A-2) must be positive if z is increasing and negative if z is decreasing. 

Therefore, if the critical point on the ray nearest the initial value is a maximum,7 the sign 

must be positive, but if it is a minimum the sign must be negative. After integrating (A-2) 

from the eye position at the point (0,zo) to the nearest critical point, where the right side 

becomes infinite, the sign must change. If the integration is continued the sign must 

change after each critical point reached by the process. 

Two versions of the Mathcad ray calculation spread sheet, based on solving the 

differential equation (A-2), using (A-l) for the temperature profile, follow. One, called 

raycalc3.mcd, assumes that the critical point on the ray nearest the eye level zo is a 

maximum; the other, which assumes that the nearest critical point is a minimum, is 

raycalc4.mcd. Both programs calculate Cartesian coordinates of points along a ray and 

store the data in a file. Each also plots the corresponding ray using the data created in this 

manner, and a later part of each program can plot nine rays in a single figure after the 

necessary data files have been created by running the earlier part. 

The critical point may occur at zm or at another value of z at which the index of refraction n(z) equals 
n(zm). 
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RAYCALC3.MCD 
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Raycalc3.mcd 
CAUTION! Click on Automatic in the Math menu to toggle to the manual mode before proceeding. 

This program generates a temperature profile and the corresponding index of refraction profile. The 
function chosen for this purpose is a cubic polynomial that has only 1 real zero and depends on three 
independent parameters and a scale factor sf. The program also traces a ray, given its maximum 
height, but it assumes a ray with at most one maximum. 

TOL := 10 8 

sf := 100 b := 0     c = 2 d := 275     a  = b2 + c2 

t(x) : = b2 x   + a2 x + d 
sß sß 

Check the lowest temperature, which is intitially in deg K., in deg C and deg F: 

b2=2b 

sf2 
sß := sf3a2 : = 

a 

sf 

g:=2-b2 h  = 2 f 

C := t(0) - 273    C =.2 

9 ■— + 32.2 = 167.425 
5 

9-— + 32.2 = 35.8 
5 

C := t(450) - 273 

Get first and second derivatives t'(x) and t"(x) of the temperature profile. 

t'(x) := f x   - g x +- a2 tM(x) := hx- g 

z := 0.1.. 500 

380 
Temperature Profile 

300 400 500 
zft 
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Raycalc3.mcd 

Temperature Derivative 

200 300 
zft 

400 500 

0.003 
Temperature Second Derivative 

zft 
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Raycalc3.mcd 

Get the index of refraction profile. First define some universal constants:       NQ   = 77.5256, 

T := .03417   , the standard atmospheric pressure at sea level P Q  = 1013.25 , which, along 

with the temperature profile t(z), determine the atomospheric pressure p(z) and the modulus of 
refraction N(z) as a function of the height z. The index of refraction n(z) is defined in terms of the 
modified modulus M(z). The parameter K is .048 if the unit of height is feet or .157 if it is meters. 

P(*) 

rz 

-r- 

N(z):=N0 
p(») 
t(z) 

6 
K  = .048   M(z) := N(z) + KZ     n(z)  =1 + 10    M(z) 

j  =0,1.45       Vj := 10-j    wj  = M(vj) u  = 70    xe  = root(n(u) - n(0),u) 

Write modified index profile to a file.    WRITEPRN(nprofO)   = augment(v,w) 

The first and second derivatives n'(z), n"(z) are then given by: 

n'(z) :=10'6-  K- r + t'(z)-N(z) r3=3T 

n"(z)  = 10 
6(2t'(z)z + r3t'(z)-t(z)t"(z) 

t(z)2 
N(z) 

Index of Refraction Profile 
1.0003 i                  I                  I                  I 

- 1.00028 

1.00026 - 

1.00024 - \ 

1.00022 

1 nnn^ i                  i                 i                  i 

100 200 300 
zft 
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Raycalc3.mcd 

Estimate the height where the index is a maximum and then calculate it.    u   = 200 

h m  = root(n'(u) ,u)    h m = 140.33556 Avoid calculating a ray with a maximum at 
this height. 

Choose the viewing eye height: Zg  =80 

u   = 400 Ray maximum should be higher than   rootfn(u) - nfzgVu) = 177.39753 

Calculate the height at which the index has the same value as at the ground. Actually choose .3 feet 
above the ground for this purpose to avoid complications in calculating the ray path. 

u := 500    he := root(n(u)- n(.3),u)h e = 229.76117 

2 
Choose the height of the ray maximum:   z m := 300 n m 

u := 1 £0 := if zm>he,0,root n(u) - nm,u)      £0 = 0 

n[zm     n2  =nm 

Define some auxilliary functions:   O ( z ) n(z)      n2 

Calculate the ray arclength from the viewing eye to the ray maximum. 

TOL  = .1 z m„  = z m - 1 mn        m 

xl  =nm 

mn Ofz 

*(0 
d£ x 

mn 
m 

n'zmn   n' zmn 
m 

m 

mn 

n"(Q 

(n(C)-n'(C)) 
■*(C 

XQ=XJ + X2        X0 = 5.75122« 10 

x00  = 2 x0 " nm 

x00 = 2.15026-10' 

$(0 
dC + n 

Si   =^0+1 

m " U W(l 
- n m 

^0 
n"(C) 

0 

6080 
9.45924 

x00 

6080 

I 
(n(C)-n'(C)) 

0(C) dC 

1 
= 35.36618 

Define the second function used in the ray differential equations. 

h(x,z) := if(x<x0,<D(z),-<D(z))    g(x,z)  = if(x<x00,h(x,z),<D(z) 

f2(x,z)  =if(z<0,0,g(x,z)) 

Differential equations:        y0  = z Q D(x,y) :=f2(x'yo 
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Solution of differential equations:    Z : = rkfixed (y, 0,200000,200, D) 

s = arclength, x = horizontal distance, z = vertical distance 

k := 0.1.200 
6080 

zk  =if Zk,l<0>°,ZM 

N 

Ray Path for a Given Maximum Height 
400 1              1              l              i              i              i 

300 

?ftft 

/-""—~\ - 

100 

i              i              i              i \         i              i 

- 

10 15 20 
xnmi 

25 30 35 

Y  = augment(x,z)    WRITEPRN( ray8)  = Y Y0,=80 

To continue with another ray change the ray filename, go to page 4 and define a new ray height. 

To plot all rays together first read in data from all ray files. 

U := READPRN(rayl) 

Y := READPRN(ray4) 

Q := READPRN(ray7) 

V  = READPRN(ray2)       W  = READPRN(ray3) 

Z = READPRN(ray5)        P  = READPRN(ray6) 

R := READPRN(ray8)       S  = READPRN(ray9) 

Assign a variable to the data for each ray.    v   =200 

A-8 
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i = 0,1.v 

u. ■= Ui,l 

Pi = PU 

yo = 80 

vi := vu wi=wu        V=Yu z:  = Zs i,l 

qs  = Q. j r.  = Rj j s. := Sj j x.  = S. i,0 

350 
Rays From a Viewing Eye 
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CAUTION! Click on Automatic in the Math menu to toggle to the manual mode before proceeding. 

This program is specifically for rays in an inferior mirage, i.e., each with a minimum and a change in 
the sign of its curvature. The program generates a temperature profile and the corresponding index of 
refreaction profile. The function chosen for this purpose is a cubic polynomial that has only one real 
root and depends on three parameters and a scale factor sf. The program also traces a ray, given its 
minimum height, but it assumes a ray with at most one minimum and one maximum. 

TOL  = 10 8 

sf := 100 b = 0     c := 2 d  = 275     a = b2 + c2     "     2b 

t(x) 
X 

sß 
b2 x   + a2 x +- d 

3 

sß 

b2 
sf2 

g  =2b2 

sß  = sf3   a2 

h  = 2 f 

Check the lowest temperature, which is intitially in deg K., in deg C and deg F: 

C=t(0)-273    C=2 9-+ 32.2 = 35.8 
5 

Get first and second derivatives t'(x) and t"(x) of the temperature profile. 

t'(x)  = f x2 - g x + a2 t'*(x)  = h x - g 

z = 0.1 .500 

380 
Temperature Profile 

260 
100 200 300 400 500 

a 

sf 

zft 
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Temperature Derivative 

zft 

x := 30 t0 := root(t'(x),x) t0 = 115.4700571 

0.003 
Temperature Second Derivative 

IJ0.002 
£2 
U 

T3 

o.ooi - 

300 
zft 
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Get the index of refraction profile. First define some universal constants:       NQ  = 77.5256, 

T   = .03417   , the standard atmospheric pressure at sea level PQ  = 1013.25 , which, along 

with the temperature profile t(z), determine the atomospheric pressure p(z) and the modulus of 
refraction N(z) as a function of the height z. The index of refraction n(z) is defined in terms of the 
modified modulus M(z). The parameter K is .048 if the unit of height is feet or .157 if it is meters. 

p(z)  =P0e 

rz 

t(0 
<K 

N(z):=N0 
p(') 
t(z) 

K := .048   M(z)  = N(z) + K-z     n(z)  = 1 + 10    M(z) 

j  =0,1. 45       v.  = 10 j W.  := M(V. 

Write modified index profile to a file.      WRITEPRN( nprofO ) : = augment ( v, w ) 

The first and second derivatives n'(z), n"(z) are then given by: 

n'(z) := IQ'6- k - r + t'(z).N(z) 

n"(z) := 10' 6 2f(zr + r3f(z)-t(z)t"(z) 

3 -=3-r 

\ 

1.00029 

1.00028 - 

1.00027 - 

1.00026 - 

N(z) 

Index of Refraction Profile 

200 300 
zft 

400 500 
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i := 0,1 .50       Xj := 10 i  tj := t(x.)   WRITEPRN(temprof)  = augment(x,t) 

v. := n(Xj) WRITEPRN(nprof)  = augment(x,v) 

Estimate the height where the index is a maximum and then calculate it. 

u  = 200      h m  = root(n'(u),u)h m = 140.3355589 

Viewing eye height: z 0  = 200       u   = 0 root(n(u) - n(z(|),u) = 49.2077951 

2 
Choose a minimum height for a ray:    z m  = 25        nm  = nfz 

Calculate the height where the index is the same. 

u  = 500      £ 0  = rootfn(u) - n m,u 

\ 0 = 215.6876967 \ x  = \ 0 - 1 

m n -> :- n m 

Define some auxilliary functions: ^/x\ 

TOL  = .1 

n(z)   - n2 

Calculate the ray arclength from the viewing eye to the ray minimum. 

zmn  "zm+1 

n m 

mn 

*(C) 
dC x 

»m-$zmn 
nzmn   n   zmn 

- n m 

m 

mn 

x0=x1 + x2    x0 = 9.8901947-10 

n"(C) 

(n(C)-n'(C)) 

O(C) dC 

a 
x00  = 2x0 + nm 

1      „        "m^l 
dC ; ;    ,       ,   + n 

0(0 nSlKU 1 •"   «»1 
m 

""(0 

(n(Qn'(C)) 

0(C) dC 

00 2.1728195-10~ 

x000  " 2 x00 " x0 x 000 = 3.3566196-10' 
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Define the second function used in the ray differential equations. 

h(x,z)   =if(x<x0,-O(z),(5(z)) gi(x,z)   =if(x>x00,-O(z),h(x,z) 

fj(x,z) := if^x>x000,O(z),gl(x,z) 

f(x,z)  = if(z<0,0,fi(*,z) 

Differential equations: y0 := z Q D(x,y) :=f(x,y0 

Solution of differential equations:    Z : = rkfixed (y, 0,200000,200, D ) 

s = arclength, x = horizontal distance, z = vertical distance 

k = 0,1 .200 
6080 \=if(\l<0>°>\l 

h 

N 

Ray Path for a Given Maximum 
250 i              i              i              i              i              i 

200 /    - 

150 - 

100 - 

50 

n i              i              i              i              i              i 

— 

10 15 20 
xnmi 

25 30 35 

Y := augment(x,z)   WRITEPRN(ray9)  = Y 

To continue with another ray change the ray filename, go to page 4, and define a new ray height. 

A-15 



• 

Raycalc4.mcd 

• To plot all rays together first read in data from all ray files. 

U := READPRN(rayl)           V  = READPRN(ray2)       W  = READPRN(ray3) 

Y  = READPRN(ray4)           Z := READPRN(ray5)        P := READPRN(ray6) 

• Q  = READPRN(ray7)           R  = READPRN(ray8)       S  = READPRN(ray9) 

Assign a variable to the data for each ray.    v  =200 

• i := 0,1. V 

u.  =u}1               v. :=VU           w.  =W.!           Yi^Y.j               V=Zi,l 

• 
Pi=Pi,l                   V=(\l              ri=Ri,l                 V=Si,l                    V=Si,0 

Rays From a Viewing Eye 
250 1               1               i               i               i               i 

• 

200 

• 
150 

N 

• 100 

50 

• 

1                     1              ^4 -^ 1                     1                     1 

0               5               10              15              20              25              30            35 

• 
xnm 
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